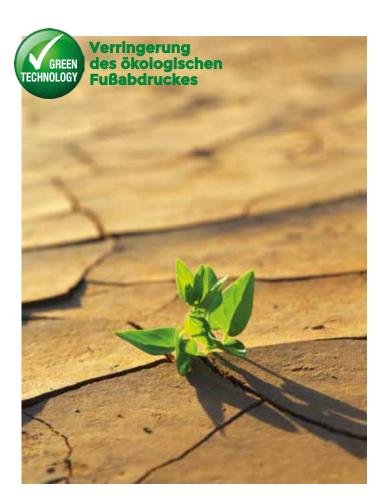


Permanent-Elektro Magnetsysteme

TECNOLIFT - Magnethebesysteme


Die Auswirkungen des Klimawandels sind seit geraumer Zeit unübersehbar, weshalb die Frage des Schutzes unseres Planeten zunehmend diskutiert wird.

Jede Entscheidung oder Handlung, die jeder von uns jeden Tag trifft, hat Auswirkungen auf die Umwelt und den ökologischen Fußabdruck, der auch bei künftigen Generationen tiefe Spuren hinterlassen wird.

MAG AUTOBLOK TECNOMAGNETE ist seit jeher für diesen wichtigen Aspekt unseres Lebens sensibilisiert, indem es aktiv zum technologischen Wandel der Magnetsysteme beiträgt, die in industriellen Produktionsprozessen eingesetzt werden, vom Heben eisenhaltiger Lasten bis zum Spannen von Werkstücken auf Werkzeugmaschinen.

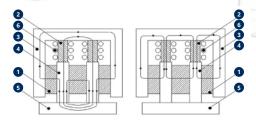
Der Einsatz von innovativen **Permanent-Elektro** Magnetsystemen anstelle von herkömmlichen, "energieintensiven" elektromagnetischen Systemen, trägt entscheidend zur Senkung des Stromverbrauchs bei.

Vergleich des Energieverbrauchs der beiden Technologien bei 100 Transportbewegungen pro Tag:

	Elektromagnet	Elektro-Permanent
Transportbewegungen pro Tag	100	100
Durchschnittlicher Stromverbrauch (Zeit) pro Transportvorgang	3 Minuten	10 Sekunden (MAG- und DEMAG-Zyklus)
Durchschnittliche Bestromung pro Tag	5 Stunden	0.28 Stunden
Leistungsaufnahme des Hebemagneten (kW/h)	12 kW/h	24 kW/h
Pro Tag verbrauchte Energie	60 kW / Tag	6,7 kW / Tag
Pro Jahr verbrauchte Energie	18.000 kW	2.010 kW
Elektrizitätskosten	0,4 €/kWh	0,4 €/kWh
Arbeitstage Jahr	300 Tag	300 Tag
Stromkosten über 1 Jahr	7.200 €/Jahr	804 €/Jahr
Stromkosten über 3 Jahre	21.600 €	2.412 €
CO2-Äquivalent-Emissionen in einem Jahr (*)	9.540 Kg	1.065 Kg

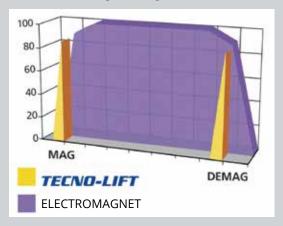
(*) Umrechnungsfaktor 0,53 kg CO2 pro verbrauchter KWh

Daraus ergeben sich ein geringer Energieverbrauch und eine geringere Umweltbelastung. Zudem benötigt die Permanent-Elektro Magnettechnik keine teuren Sicherungsbatterien (für den Fall eines Stromausfalls). Deren Herstellung und Entsorgung sind ebenfalls mit hohen Umweltkosten verbunden.

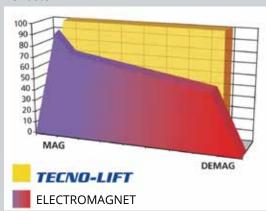


Die Permanent-Elektro Magnettechnik ist äußerst sicher, da sie für die Aufrechterhaltung der Magnetkraft nicht auf Elektrizität angewiesen ist, sondern ausschließlich durch die Wirkung der in den Magnetmodulen verbauten Dauermagneten erzeugt wird. Es wird nur für einige Sekunden Strom benötigt, um den magnetischen Fluss vom Inneren der Magnetmodule (DEMAG-Zustand) nach außen (MAG-Zustand) zu leiten.

Die beiden möglichen Zustände "MAG" oder "DEMAG" halten ihren Zustand ohne Strom zeitlich unbegrenzt aufrecht.



- Dauermagnet Neodym
- Umpolbarer Dauermagnet Al.Ni.Co
- Modulrahmen (neutrale Krone)
- Magnetischer Kollektor (Magnetpol)
- Zu hebende Stahllast
- Spule zum Umpolen des Al.Ni.Co.


offensichtlichen Vorteile der Permanent-Elektro Magnettechnik sind:

- Bedeutende Erhöhung der Sicherheit
- Massive Energieeinsparung
- Keine Sicherungsbatterien nötig
- Geringeres Gewicht und einfache Installation
- Höhere Lebensdauer aufgrund der geringeren elektrischen Belastung der Spulen (kurze Bestromungszeiten)
- Konstante Haltekraft während der gesamten Nutzung dank der Beseitigung des Joule-Effekts (kaltes System)

TECNOLIFT: Strom wird nur zur Magnetisierung oder Demagnetisierung benötigt. Nicht zur Aufrechterhaltung der magnetischen Haltekraft

TECNOLIFT: gleichbleibende Haltekraft ohne Verluste

Permanent-Elektro Magnethebesysteme für den Transport von Stahlblechen und -blöcken

Modell	Umfang*	Max. Größe
SMH 50	5 tons	3500 x 6000 mm
SMH 100	10 tons	3500 x 6000 mm
SMH 150	15 tons	3500 x 6000 mm
SMH 200	20 tons	3500 x 6000 mm
SMH 300	30 tons	3500 x 6000 mm
SMH 400	40 tons	3500 x 6000 mm
SMH 500	50 tons	3500 x 6000 mm
*Mindestmaterialstärke 30 mm		

Magnetisches Kraftmesssystem

BF 2/50X	5 tons	3500 x 6000 mm
BF 2/65	6,5 tons	3500 x 6000 mm
BF 2/80X	8 tons	3500 x 6000 mm
BF 2/100X	10 tons	3500 x 6000 mm
*Mindestmaterialstärke 5 mm		

Manuelles System zum Drehen der Quertraversen um 90°

*Mindestmaterialstärke 5 mm		
TM 4/250X	25 tons	3500 x 12000 mm
TM 4/200X	20 tons	3500 x 12000 mm
TM 4/160X	16 tons	3500 x 12000 mm
TM 4/130X	13 tons	3500 x 12000 mm
TM 4/100X	10 tons	3500 x 12000 mm

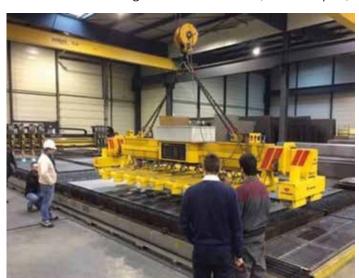
TM 6/160X	16 tons	3500 x 16000 mm
TM 6/200X	20 tons	3500 x 16000 mm
TM 6/250X	25 tons	3500 x 16000 mm
TM 6/300X	30 tons	3500 x 16000 mm
*Mindestmaterialstärke 5	mm	

TB 4/35	3,5 tons	3500 x 6000 mm
TB 6/35	3,5 tons	3500 x 12000 mm
TB 2/60	6 tons	3500 x 6000 mm
TB 4/90	9 tons	3500 x 12000 mm
TB 4/120	12 tons	3500 x 12000 mm
TB 6/180	18 tons	3500 x 18000 mm
*Mindestmaterialstärke 5 mm		

Kippsystem 0 – 87°

Einfach zu installieren Einfach zu bedienen (Plug & Play)

- Die im Lieferumfang enthaltene, funkgesteuerte On-Board-Steuereinheit vereinfacht die Installation
- Erfordert nur den Anschluss an das vorhandene Stromnetz (400V 50/60Hz)
- Die Funksteuerung ermöglicht alle Betriebs- und Sicherheitsfunktionen auf einfache und intuitive Art und Weise



Anwendungsbeispiele

Permanent-Elektro Magnettraverse TM6/200 (Blechtransport)

Permanent-Elektro Magnetsystem TT-COMBI zum Be- und Entladen von Laser-, und Plasmaschneidmaschinen in einem einzigen Arbeitsgang

Permanent-Elektro Magnetmodul SMH 300 (Blöcke)

Permanent-Elektro Magnettraverse der Serie TM-MULTI zum Heben von Mehrfach- und Einzelblechen

Weitere Permanent-Elektro Magnethebesysteme

TP-Serie für den Transport von H-Profilen

CV-Reihe für den Transport von Bandstahl mit vertikaler Wickelachse

RD-Reihe für den Transport von rundem Vollmaterial

CH-Reihe für den Transport von Bandstahl mit horizontaler Wickelachse

MAG-AUTOBLOK TECNOMAGNETE SpA Hauptsitz

Via Nerviano 31 - 20045 Lainate (MI) - ITALIEN Tel: +39 02 937591 info@magtecnomagnete.com www.mag-tecnomagnete.com

TECNOMAGNETE GmbH

Deutschland - Österreich

Ohmstrasse 4 - 63225 Langen - DEUTSCHLAND Tel.: +49 6103 750730 - Fax: +49 6103 7507311 Email kontakt@magtecnomagnete.com

TECNOMAGNETE Inc.

U.S.A. - Kanada - Mexiko

6655 Allar Drive - Sterling Hts, MI 48312 - USA Tel.: +1 586 276 6001 - Fax: +1 586 276 6003 Email infousa@magtecnomagnete.com

TECNOMAGNETE SARL

Frankreich

Batiment C - 01200 VALSERHONE - FRANKREICH Tel.: +33 (0)4 50 56 06 00 - Fax: +33 (0)4 50 56 06 10 Email contact@magtecnomagnete.com